Abstract

The mutual response between surface temperature and the mass concentration of regional black carbon (BC) aerosols has still remained far from understanding due to its complex nature. A detailed analysis presented in this study using long-term data indicates a significant pattern of mutual response between surface temperature and BC in restricted background weather conditions (water vapor, cloud cover and wind speeds). The analysis shows that a fall in surface temperature which naturally occurs daily after the sunrise, leads to the development of a stronger inversion in the near-surface level and this, in turn, contributes to the enhancement of BC fumigation peak. Further, the enhanced fumigation peak (especially during pre-monsoon) is found positively influencing the mid-day temperature rise possibly due to the immediate impact of the direct radiative forcing of BC aerosols. These observations lead us to consider a hypothesis that ‘an extra fall in the morning hour surface temperature contributes to the enhancement of BC fumigation peak and can degrade the morning hour air quality which gives positive feedback to the mid-day temperature rise over a region’. A substantial in situ data [over Gadanki (13.5°N, 79.2°E)] along with MERRA-2 and ERA-5 data are used in this methodical analysis. Moreover, the validity of the hypothesis has been tested over other locations. Regional weather and seasonal cycle are found to have apparent interference with the feature of the observed mutual response pattern. The results from this study clearly indicate that the approach used, can be executed location independently.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call