Abstract

Slow inactivation occurs in voltage-gated Na+ channels when the membrane is depolarized for several seconds, whereas fast inactivation takes place rapidly within a few milliseconds. Unlike fast inactivation, the molecular entity that governs the slow inactivation of Na+ channels has not been as well defined. Some regions of Na+ channels, such as mu1-W402C and mu1-T698M, have been reported to affect slow inactivation. A mutation in segment I-S6 of mu1 Na+ channels, N434A, shifts the voltage dependence of activation and fast inactivation toward the depolarizing direction. The mutant Na+ current at +50 mV is diminished by 60-80% during repetitive stimulation at 5 Hz, resulting in a profound use-dependent phenomenon. This mutant phenotype is due to the enhancement of slow inactivation, which develops faster than that of wild-type channels (tau = 0.46 +/- 0.01 s versus 2.11 +/- 0.10 s at +30 mV, n = 9). An oxidant, chloramine-T, abolishes fast inactivation and yet greatly accelerates slow inactivation in both mutant and wild-type channels (tau = 0.21 +/- 0.02 s and 0.67 +/- 0.05 s, respectively, n = 6). These findings together demonstrate that N434 of mu1 Na+ channels is also critical for slow inactivation. We propose that this slow form of Na+ channel inactivation is analogous to the "C-type" inactivation in Shaker K+ channels.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.