Abstract

AbstractThe fabrication of catalytically stable nanocatalysts containing fine noble metal nanoparticles is an important research theme. We report a method for the synthesis of a hierarchically structured Pd@hm‐CeO2 multi‐yolk–shell nanocatalyst (h=hollow; m=mesoporous) containing sub‐10 nm Pd nanoparticles from pre‐made hydrophobic Pd nanoparticles. In the developed method, monodisperse hydrophobic Pd nanoparticles are first reacted with an iron oxide precursor iron(III) acetylacetonate to allow the deposition of iron oxide on their surface. In a Brij 56–water–cyclohexane reverse micelle system, the surface growth of iron oxide is found to mediate and, thus, facilitate the encapsulation of hydrophobic Pd nanoparticles in SiO2 to yield Pd‐Fe2O3@SiO2 nanoparticles in a high concentration. After removal of Fe2O3 by acid, the obtained Pd@SiO2 core–shell particles are reacted solvothermally with Ce(NO3)3 in an ethylene glycol–water–acetic acid mixture to produce multi‐core–shell Pd@SiO2@m‐CeO2 nanospheres. In each multi‐core–shell Pd@SiO2@m‐CeO2 nanosphere, several Pd@SiO2 particles are separately embedded in mesoporous CeO2. After selective removal of silica by NaOH, Pd@SiO2@m‐CeO2 nanospheres are transformed into the multi‐yolk–shell Pd@hm‐CeO2 nanocatalyst. Even with a low Pd loading at 0.4 wt %, the as‐prepared multi‐yolk–shell Pd@hm‐CeO2 nanocatalyst displays high catalytic activity in CO oxidation with 100 % CO conversion at 110 °C. In comparison, under the same catalytic conditions, the same amount of the same‐sized Pd nanoparticles supported on SiO2 achieves 100 % CO conversion at 180 °C. More importantly, the multi‐yolk–shell structure of the Pd@hm‐CeO2 nanocatalyst significantly enhances the stability of the catalyst. No loss in catalytic activity was observed on the Pd@hm‐CeO2 nanocatalyst treated at 550 °C for six hours. The Pd@hm‐CeO2 nanocatalyst also exhibited excellent catalytic performance and stability in the aerobic selective oxidation of cinnamyl alcohol to cinnamaldehyde.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.