Abstract
ABSTRACTWe report a multiwavelength study of the massive ($M_{\star } \gtrsim 10^{11} \rm {M}_{\odot }$), z ∼ 2 star-forming galaxy GMASS 0953, which hosts an obscured AGN. We combined near-infrared observations of the GNIRS, SINFONI and KMOS spectrographs to study the kinematics of the [O iii] λ5007 and H α emission lines. Our analysis shows that GMASS 0953 may host an ionized disc extending up to 13 kpc, which rotates at a velocity of $V_{\rm {ion}} = 203^{+17}_{-20}$ km s−1 at the outermost radius. Evidence of rotation on a smaller scale (R ∼ 1 kpc) arises from the CO(J = 6–5) line. The central velocity $V_{\rm {CO}} = 320^{+ 92}_{-53}$ km s−1 traced by the molecular gas is higher than Vion, suggesting that the galaxy harbours a multiphase disc with a rotation curve that peaks in the very central regions. The galaxy appears well located on the z = 0 baryonic Tully–Fisher relation. We also discuss the possibility that the [O iii] λ5007 and H α velocity gradients are due to a galactic-scale wind. Besides, we found evidence of an AGN-driven outflow traced by a broad blueshifted wing affecting the [O iii] λ5007 line, which presents a velocity offset Δv = −535 ± 152 km s−1 from the systemic velocity. Because of the short depletion time-scale (τdep ∼ 108 yr) due to gas ejection and gas consumption by star formation activity, GMASS 0953 may likely evolve into a passive galaxy. However, the role of the AGN in depleting the gas reservoir of the galaxy is quite unclear because of the uncertainties affecting the outflow rate.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have