Abstract
To monitor a multivariate process, a classical Hotelling's T2 control chart is often used. However, it is well known that such control charts are very sensitive to the presence of outlying observations in the historical Phase I data used to set the control limit. In this paper, we propose a robust Hotelling's T2-type control chart for individual observations based on highly robust and efficient estimators of the mean vector and covariance matrix known as reweighted minimum covariance determinant (RMCD) estimators. We illustrate how to set the control limit for the proposed control chart, study its performance using simulations, and illustrate implementation in a real-world example.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.