Abstract

The signal issued by a control chart triggers the process professionals to investigate the special cause. Change point methods simplify the efforts to search for and identify the special cause. In this study, using maximum likelihood estimation, a multivariate joint change point estimation procedure for monitoring both location and dispersion simultaneously is proposed. After a signal is generated by the simultaneously used Hotelling's T 2 and/or generalized variance control charts, the procedure starts detecting the time of the change. The performance of the proposed method for several structural changes for the mean vector and covariance matrix is discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.