Abstract
This study, conducted at the University of Bristol’s aeroacoustic facility, explores the aeroacoustic characteristics of a 10-inch APC propeller in pusher configuration within ground effect conditions. Tested at a rotational speed of 7000 r/min, the propeller’s performance was evaluated at varying distances from the ground. Wall pressure fluctuations near the propeller were measured at eight radial points, complemented by far-field acoustic measurements. Consistent with previous research, distinctive thrust and torque behaviours were observed when operating both in and out of ground effect. Notably, a significant noise increase of approximately 5 dB was observed on the ground’s reflected side, while a reduction of about 14 dB was detected on the shielded side. Higher-order statistical analysis such as skewness and kurtosis revealed substantial effects of tip vortex impingement in ground effect conditions. This study applies two-point statistics and the Corcos model to analyze propeller-induced wall pressure fluctuations. The coherence function effectively captures the intricate dynamics of pressure variations across different spatial locations and frequencies. This approach offers novel insights into the behaviour of boundary layers and flow-induced pressures in the context of propellers operating in the ground effect. Wavelet decomposition was utilized to differentiate the influences of the boundary layer and the acoustic field. This comprehensive analysis highlights the intricate dynamics of propeller operation in ground effect, contributing valuable insights to the field of aeroacoustic research.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.