Abstract

Accurately predicting the changes in turbine vibration trends is a key part of the operational condition maintenance of hydropower units, which is of great significance for improving both the operational condition and operational efficiency of hydropower plants. In this paper, we propose a multistep prediction model for the vibration trend of a hydropower unit. This model is based on the theoretical principles of signal processing and machine learning, incorporating variational mode decomposition (VMD), stochastic configuration networks (SCNs), and the recursive strategy. Firstly, in view of the severe fluctuations of the vibration signal of the unit, this paper decomposes the unit vibration data into intrinsic mode function (IMF) components of different frequencies by VMD, which effectively alleviates the instability of the vibration trend. Secondly, an SCN model is used to predict different IMF components. Then, the predicted values of all the IMF components are superimposed to form the prediction results. Finally, according to the recursive strategy, a multistep prediction model of the HGU's vibration trends is constructed by adding new input variables to the prediction results. This model is applied to the prediction of vibration data from different components of a unit, and the experimental results show that the proposed multistep prediction model can accurately predict the vibration trend of the unit. The proposed multistep prediction model of the vibration trends of hydropower units is of great significance in guiding power plants to adjust their control strategies to reach optimal operating efficiency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.