Abstract
BackgroundGenome-wide association studies (GWAS) have become a common approach to identifying single nucleotide polymorphisms (SNPs) associated with complex diseases. As complex diseases are caused by the joint effects of multiple genes, while the effect of individual gene or SNP is modest, a method considering the joint effects of multiple SNPs can be more powerful than testing individual SNPs. The multi-SNP analysis aims to test association based on a SNP set, usually defined based on biological knowledge such as gene or pathway, which may contain only a portion of SNPs with effects on the disease. Therefore, a challenge for the multi-SNP analysis is how to effectively select a subset of SNPs with promising association signals from the SNP set.ResultsWe developed the Optimal P-value Threshold Pedigree Disequilibrium Test (OPTPDT). The OPTPDT uses general nuclear families. A variable p-value threshold algorithm is used to determine an optimal p-value threshold for selecting a subset of SNPs. A permutation procedure is used to assess the significance of the test. We used simulations to verify that the OPTPDT has correct type I error rates. Our power studies showed that the OPTPDT can be more powerful than the set-based test in PLINK, the multi-SNP FBAT test, and the p-value based test GATES. We applied the OPTPDT to a family-based autism GWAS dataset for gene-based association analysis and identified MACROD2-AS1 with genome-wide significance (p-value= 2.5 × 10− 6).ConclusionsOur simulation results suggested that the OPTPDT is a valid and powerful test. The OPTPDT will be helpful for gene-based or pathway association analysis. The method is ideal for the secondary analysis of existing GWAS datasets, which may identify a set of SNPs with joint effects on the disease.Electronic supplementary materialThe online version of this article (doi:10.1186/s12864-015-1620-3) contains supplementary material, which is available to authorized users.
Highlights
Genome-wide association studies (GWAS) have become a common approach to identifying single nucleotide polymorphisms (SNPs) associated with complex diseases
We compared the power for the Optimal P-value Threshold Pedigree Disequilibrium Test (OPTPDT) test with PLINK, FBAT and GATES under different scenarios
A similar power pattern was observed that the OPTPDT has the highest power compared to PLINK, FBAT, and GATES with 5 or 10 disease SNPs
Summary
Genome-wide association studies (GWAS) have become a common approach to identifying single nucleotide polymorphisms (SNPs) associated with complex diseases. As complex diseases are caused by the joint effects of multiple genes, while the effect of individual gene or SNP is modest, a method considering the joint effects of multiple SNPs can be more powerful than testing individual SNPs. The multi-SNP analysis aims to test association based on a SNP set, usually defined based on biological knowledge such as gene or pathway, which may contain only a portion of SNPs with effects on the disease. The significant SNPs only explained a small portion of heritability of the complex traits [1]. Complex diseases, such as hypertension, diabetes, and Alzheimer disease, are caused by the joint effects of multiple genes, while the effects of individual genes or SNPs are modest.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have