Abstract
Taxi plays a supplement role in sustainable development of urban public transport systems. However, the extent to which the built environment affects taxi ridership at various spatial scales deserves further exploration because understanding the true spatial heterogeneity across a varying scale could be valuable for both global and localized policy decision-makings. In this study, we attempt to analyze and discuss the spatial predictors of taxi ridership by utilizing an multiscale geographically weighted regression (MGWR) model and comparing the model's performance to that of ordinary least square (OLS) and geographically weighted regression (GWR) models. Using the taxi data of Xi'an city, we found that the MGWR model could explain 81.8% of the total taxi ridership fluctuations and allows localized and targeted policy makings to help taxi drivers search for passengers and to improve passengers' taxi-hailing experiences in specific districts.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.