Abstract
AbstractThis study evaluates the influences of air pollution in China using a recently proposed model—multi‐scale geographically weighted regression (MGWR). First, we review previous research on the determinants of air quality. Then, we explain the MGWR model, together with two global models: ordinary least squares (OLS) and OLS containing a spatial lag variable (OLSL) and a commonly used local model: geographically weighted regression (GWR). To detect and account for any variation of the spatial autocorrelation of air pollution over space, we construct two extra local models which we call GWR with lagged dependent variable (GWRL) and MGWR with lagged dependent variable (MGWRL) by including the lagged form of the dependent variable in the GWR model and the MGWR model, respectively. The performances of these six models are comprehensively examined and the MGWR and MGWRL models outperform the two global models as well as the GWR and GWRL models. MGWRL is the most accurate model in terms of replicating the observed air quality index (AQI) values and removing residual dependency. The superiority of the MGWR framework over the GWR framework is demonstrated—GWR can only produce a single optimized bandwidth, while MGWR provides covariate‐specific optimized bandwidths which indicate the different spatial scales that different processes operate.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.