Abstract
This Commentary will describe the goal of developing and implementing novel, powerful, and integrated multiscale computer simulation methodology capable of accessing the large length and long time scales inherent in the behavior of biomolecular, multiprotein "active matter" complexes within the context of cellular biology. Examples include those involved in the actin-based cytoskeleton and its mechanochemistry. The primary objective is to connect detailed molecular and chemical properties with the key mesoscopic features manifest at the scales of cellular biology through a transformative theoretical and computer simulation approach, based on real physical and chemical interactions. This multiscale computational work would also make critical contact with rapidly developing experimental techniques such as super-resolution optical imaging, single molecule spectroscopy, and cryo-electron tomography, which are providing remarkable insight into the internal mesoscale self-organization and dynamics of cells.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have