Abstract

ABSTRACTNatural materials have often a defined multilevel hierarchy which governs their macroscopic mechanical properties. Cork, sponge and bone are only a few examples. These materials are generally heterogeneous and can exhibit a cellular pattern, i.e. a partition of a solid with voids, at multiple levels of the structural hierarchy. It is well known that the arrangement of the voids plays a major role in the overall performance of the material. Furthermore, it has been demonstrated that the nesting of cellular patterns at different levels confers remarkable mechanical properties to the structure.This paper presents a multiscale approach to the analysis of a hierarchical structure which exhibits nested levels of lattice, i.e. regular periodic patterns of voids occur at different length scales. A number of three-dimensional topologies as well as the effect of lattice geometry parameters have been investigated. The results of the analysis are plotted onto material property charts. The visualization of the properties helps gain insight into the contribution that each hierarchical layer imparts to the overall properties of a component hierarchically structured with lattice materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.