Abstract
This paper describes the BUSCAMOS-Oil monitoring system, which is a robotic platform consisting of an autonomous surface vessel combined with an underwater vehicle. The system has been designed for the long-term monitoring of oil spills, including the search for the spill, and transmitting information on its location, extent, direction and speed. Both vehicles are controlled by two different types of bio-inspired neural networks: a Self-Organization Direction Mapping Network for trajectory generation and a Neural Network for Avoidance Behaviour for avoiding obstacles. The systems' resilient capabilities are provided by bio-inspired algorithms implemented in a modular software architecture and controlled by redundant devices to give the necessary robustness to operate in the difficult conditions typically found in long-term oil-spill operations. The efficacy of the vehicles' adaptive navigation system and long-term mission capabilities are shown in the experimental results.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have