Abstract
A simple Newton-like descent algorithm for linear programming is proposed together with results of preliminary computational experiments on small- and medium-size problems. The proposed algorithm gives local superlinear convergence to the optimum and, experimentally, shows global linear convergence. It is similar to Karmarkar's algorithm in that it is an interior feasible direction method and self-correcting, while it is quite different from Karmarkar's in that it gives superlinear convergence and that no artificial extra constraint is introduced nor is protective geometry needed, but only affine geometry suffices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.