Abstract

Electron tomography is used in both materials science and structural biology to image features well below the optical resolution limit. Here, we present a new method for high-resolution 3D transmission electron microscopy (TEM) which approximately reconstructs the electrostatic potential of a sample at atomic resolution in all three dimensions. We use phase contrast images captured through-focus and at varying tilt angles, along with an implicit phase retrieval algorithm that accounts for dynamical and strong scattering, providing more accurate results with much lower electron doses than current atomic electron tomography methods. We test our algorithm using simulated images of a synthetic needle geometry dataset composed of an amorphous silicon dioxide shell around a silicon core. By simulating various levels of electron dose, tilt and defocus, missing projections, and regularization methods, we identify a configuration that allows us to accurately determine both atomic positions and species. We also test the ability of our method to recover randomly positioned vacancies in light elements such as silicon, and to accurately reconstruct strongly-scattering elements such as tungsten.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.