Abstract

ABSTRACT The conventional approach to mine planning is to use a single estimated orebody model as the basis for production scheduling. This approach, however, does not consider grade uncertainties associated with grade estimation. These uncertainties have a significant impact on the net present value (NPV) and can only be accounted for when modelled as part of the production scheduling optimisation problem. In this research, a set of equally probable simulated orebodies generated through Sequential Gaussian Simulation is used as input to a stochastic optimisation model solved with genetic algorithm (GA). Grade variability is considered as part of the stochastic model. The problem definition and resource constraints are formulated and optimised using a specially designed mining-specific GA. This GA is employed to handle partial block processing through a specialised chromosome encoding technique resulting in near-optimal solutions. Two case studies are presented which compare results from the stochastic model solved with GA (SGA) and a Stochastic Mixed Integer Linear Programming (SMILP) model solved with CPLEX. For the second case study, while the SMILP model was at an optimality gap of 101% after 28 days, the SGA model generated an NPV of $10,045 M at 10.16% optimality gap after 1.5 h.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call