Abstract
AbstractThis study proposes a multi‐perspective fusion model for operating speed prediction based on knowledge‐enhanced graph neural networks, named RoadGNN‐S. By utilizing message passing and multi‐head self‐attention mechanisms, RoadGNN‐S can effectively capture the coupling impacts of multi‐perspective alignment elements (i.e., two‐dimensional design, 2.5‐dimensional driving, and three‐dimensional spatial perspectives). The results of driving simulation data show that root mean squared error, mean absolute error, mean absolute percentage error, and R‐squared values of RoadGNN‐S are superior to those of other classic deep learning algorithms. Then, prior knowledge (i.e., highway geometry supply, driver expectations, and vehicle dynamics) is introduced into RoadGNN‐S, and the models’ prediction accuracy and transferability are verified by field observation experiments. Compared to the above data‐driven models, knowledge‐enhanced RoadGNN‐S effectively avoids the fundamental errors, improving the R‐squared value in predicting passenger cars’ and trucks’ operating speed by 7.9% and 10.7%, respectively. The findings of this study facilitate the intelligent highway geometric design with multi‐perspective fusion and knowledge enhancement techniques.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Computer-Aided Civil and Infrastructure Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.