Abstract
A multi-objective particle swarm algorithm based on the active learning (MOPSAL) approach is proposed that combines a Multi-Objective particle swarm optimization (MOPSO) with an Pareto Active Learning (PAL) approach. In MOPSAL, the candidate solution set is produced by a sampling method based on mutation operator and preselected by the PAL approach. Then, the best Pareto solution from the candidate solution set is used to guide the search of MOPSO. To validate the performance of MOPSAL, the proposed algorithm compares with the standard multi-objective particle swarm algorithm (MOPSO) and the improved non-dominated sorting genetic algorithm (NSGA-II) for five widely used benchmark problems. The results show the effectiveness of the proposed MOPSAL algorithm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.