Abstract
The present study proposes a hybrid framework combining multiple methods to determine the optimal values of design variables in a flexible manufacturing system (FMS). The framework uses a multi-objective response surface methodology (RSM) to achieve optimum performance. The performance of an FMS is characterized using various weighted measures using the best–worst method (BWM). Subsequently, an RSM approximates the functional relationship between the FMS performance and design variables. The central composite design (CCD) is used for this aim, and a polynomial regression model is fitted among the factors. Eventually, a bi-objective model, including the fitted and cost functions, is formulated and solved. As a result, the optimal percentage for deploying the FMS equipment and machines to achieve optimal performance with the lowest deployment cost is determined. The proposed framework can serve as a guideline for manufacturing organizations to lead strategic decisions regarding the design problems of FMSs. It significantly increases productivity for the manufacturing system, reduces redundant labor and material handling costs, and facilitates production.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.