Abstract

Since energy hubs meet the needs of customers for different energies, their construction rate has increased in recent years. The annual growth of load demand on the one hand and the declining efficiency of hub converters on the other hand have posed many challenges for hub designers. Therefore, this study develops a multi-objective model for the design of hub considering converters’ variable efficiency, degradation of equipment and annual growth of the load and energy prices. The proposed hub is equipped by a power-to-gas (P2G) technology and its consumers participate in an integrated demand response (IDR) program. The problem is formulated in mixed-integer non-linear programming (MINLP) format and is solved via DICOPT in GAMS environment. The simulation results substantiate that dynamic framework has led to the much more accurate determination of equipment capacity. Besides, the results indicate that the P2G technology reduces CO2 emissions by 9.89% through consuming CO2 emitted from the CHP and boiler. The results also illustrate that P2G increases the efficiency of gas-fired converters by injecting hydrogen into them, thus reducing losses by 9.2%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.