Abstract

This paper presents the analysis and design of a single-phase voltage regulator (VR) and its multinodule parallel control. The VR employs the pulsewidth modulation three-arm rectifier-inverter topology. The inverter side adjusts the load voltage with the series regulating structure aiming to minimize converter capacity and attain higher efficiency. The rectifier side regenerates the load power and executes the active power filter function to achieve unity power factor. Based on such high-performance VR, a resistive droop method combined with the P-V droop and Q-/spl delta/ shift scheme is then proposed to control the current sharing such that multiple VRs can be paralleled directly without any control interconnection. The proposed parallel control technique possesses the features of fast response, precise voltage regulation, equal fundamental and harmonic current sharing, tolerance for parameter mismatch, and so on. Two prototype 1 KVA VRs are implemented, and the effectiveness is demonstrated by some simulation and experimental results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call