Abstract

Regional overexpression of the multidrug transporter P-glycoprotein (P-gp) in epileptic brain tissues may lower antiepileptic drugs concentrations at the target site and contribute to pharmacoresistance in refractory epilepsy. However, few techniques are available to quantitate the level of P-gp expression noninvasively in vivo. In this study, we developed a nanoagent by conjugating superparamagnetic iron oxide nanoparticles with a near infrared probe and the targeting element Pepstatin A, a peptide with specific affinity for P-gp. In a rat model of epilepsy, the nanoagent was readily and selectively accumulated within epileptogenic cerebral regions, which were detectable by both magnetic resonance imaging and optical imaging modalities. This P-gp-targeted nanoagent could be used not only in the molecular imaging of P-gp expression changes in seizure-induced regional, understanding the mechanisms of P-gp disorders, and the prediction of refractory epilepsy, but also in targeted therapies with P-gp modulators.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.