Abstract

The objective of this study is to prepare a multimodal probe which can simultaneously visualize cells by optical and magnetic resonance (MR) imaging modalities. Gelatin nanospheres incorporating quantum dots (QD) and iron oxide nanoparticles (IONP) were prepared by the conventional emulsion method. The percentage of QD and IONP incorporated in gelatin nanospheres was changed by the concentrations of gelatin and glutaraldehyde used. However, the apparent size and surface zeta potential were hardly changed. Gelatin nanospheres incorporating QD and IONP were treated with octa-arginine (R8) of a cell-penetrating peptide. When incubated with normal human articular chondrocytes, gelatin nanospheres incorporating QD and IONP were efficiently internalized into the cells although their cytotoxicity was observed at the R8 concentration of 320 μM. The cells internalizing gelatin nanospheres incorporating QD and IONP could be visualized by both the optical and MR imaging modalities. It is concluded that gelatin nanospheres incorporating QD and IONP are promising for the probe of multimodal cell imaging.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.