Abstract

Accurate prediction of human locomotion intent benefits the seamless switching of lower limb exoskeleton controllers in different terrains to assist humans in walking safely. In this paper, a deep belief network (DBN) was developed to construct a multimodal framework for recognizing various locomotion modes and predicting transition tasks. Three fusion strategies (data level, feature level, and decision level) were explored, and optimal network performance was obtained. This method could be tested on public datasets. For the continuous performance of steady state, the best prediction accuracy achieved was 97.64% in user-dependent testing and 96.80% in user-independent testing. During the transition state, the system accurately predicted all transitions (user-dependent: 96.37%, user-independent: 95.01%). The multimodal framework based on DBN can accurately predict the human locomotion intent. The experimental results demonstrate the potential of the proposed model in the volition control of the lower limb exoskeleton.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.