Abstract
AbstractWhile AI is extensively transforming Software Engineering (SE) fields, SE is still in need of a framework to consider overall all phases to facilitate Automated Software Evolution (ASEv), particularly for intelligent applications that are context-rich instead of conquering each division independently. Its complexity comes from the intricacy of the intelligent applications, the heterogeneity of the data sources, and the constant changes in the context. This study proposes a conceptual framework for achieving automated software evolution, emphasizing the importance of multimodality learning. A Selective Sequential Scope Model (3 S) model is developed based on the conceptual framework, and it can be used to categorize existing and future research when it covers different SE phases and multimodal learning tasks. This research is a preliminary step toward the blueprint of a higher-level ASEv. The proposed conceptual framework can act as a practical guideline for practitioners to prepare themselves for diving into this area. Although the study is about intelligent applications, the framework and analysis methods may be adapted for other types of software as AI brings more intelligence into their life cycles.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.