Abstract
PurposeThe aim of this work was to test the implementation of small field dosimetry following TRS‐483 and to develop quality assurance procedures for the experimental determination of small field output factors (SFOFs).Materials and methodsTwelve different centers provided SFOFs determined with various detectors. Various linac models using the beam qualities 6 MV and 10 MV with flattening filter and without flattening filter were utilized to generate square fields down to a nominal field size of 0.5 cm × 0.5 cm. The detectors were positioned at 10 cm depth in water. Depending on the local situation, the source‐to‐surface distance was either set to 90 cm or 100 cm. The SFOFs were normalized to the output of the 10 cm × 10 cm field. The spread of SFOFs measured with different detectors was investigated for each individual linac beam quality and field size. Additionally, linac‐type specific SFOF curves were determined for each beam quality and the SFOFs determined using individual detectors were compared to these curves. Example uncertainty budgets were established for a solid state detector and a micro ionization chamber.ResultsThe spread of SFOFs for each linac and field was below 5% for all field sizes. With the exception of one linac‐type, the SFOFs of all investigated detectors agreed within 10% with the respective linac‐type SFOF curve, indicating a potential inter‐detector and inter‐linac variability.ConclusionQuality assurance on the SFOF measurements can be done by investigation of the spread of SFOFs measured with multiple detectors and by comparison to linac‐type specific SFOFs. A follow‐up of a measurement session should be conducted if the spread of SFOFs is larger than 5%, 3%, and 2% for field sizes of 0.5 cm × 0.5 cm, 1 cm × 1 cm, and field sizes larger than 2 cm × 2 cm, respectively. Additionally, deviations of measured SFOFs to the linac‐type‐curves of more than 7%, 3%, and 2% for field sizes 0.5 cm × 0.5 cm, 1 cm × 1 cm, and field sizes larger than 1 cm × 1 cm, respectively, should be followed up.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.