Abstract

The treatment of bladder cancer has recently shown minimal progress. Gene therapy mediated by CRISPR provides a new option for bladder cancer treatment. In this study, we developed a versatile liposome system to deliver the CRISPR-Cas13a gene circuits into bladder cancer cells. After in vitro studies and intravesical perfusion studies in mice, this system showed five advantages: (1) CRISPR-Cas13a, a transcriptional targeting and cleavage tool for gene expression editing, did not affect the stability of the cell genome; (2) the prepared liposome systems were targeted to hVEGFR2, which is always highly expressed in bladder cancer cells; (3) the CRISPR-Cas13a sequence was driven by an artificial tumor specific promoter to achieve further targeting; (4) a near-infrared photosensitizer released using near-infrared light was introduced to control the delivery system; and (5) the plasmids were constructed with three crRNA tandem sequences to achieve multiple targeting and wider therapeutic results. This tumor cell targeting lipid delivery system with near-infrared laser-controlled ability provided a versatile strategy for CRISPR-Cas13a based gene therapy of bladder cancer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.