Abstract

The digitization of smart grid distributed generation and industrial control systems has prompted utilities to deploy tools with ubiquitous communications that potentially widen the attack surface. The utilities still continue to rely on the traditional cybersecurity technologies, such as firewalls, anti-malware tools, and passwords that do not ensure security across all dimensions of the information assurance model required for a strong cybersecurity business process. This paper proposes a multidimensional holistic framework that addresses this gap through advanced technologies, intelligent algorithms, and continued assessments. To show proof, the layered defense model, a solution dimension of the framework, is integrated into the National Renewable Energy Laboratory's Security and Resilience Testbed to replicate a utility's enterprise and substation networks. The model is used to evaluate the security and resilience of microgrid control systems, and, based on the insights gathered, recommend best practices for utility cybersecurity analysts for a strong business process. With this baseline, the paper conceptually introduces intelligence-driven solutions comprising contextual data analysis and machine learning to respond to advanced persistent threats sponsored by campaign efforts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.