Abstract

AbstractThe internal modes of the North Pacific can lead to climatic oscillations through ocean–atmosphere interactions and induce global climate responses. The best example is the Pacific Decadal Oscillation, but this fails to explain many climate phenomena. Here, another multidecadal variability over the North Pacific is described, found by analyzing reconstructed data covering the past 140 years. It is named the Pacific Multidecadal Oscillation (PMO), with anomalously high/low SSTs over the northeastern Pacific, and a quasi-60-year cycle. Related to this low-frequency variability of SST, the global mean temperature and precipitation present significant interdecadal differences. More importantly, the PMO index leads the global mean surface air temperature and SST by one to three years. The Arctic Oscillation pattern and atmospheric circulations are shown to change substantially with the transition of the PMO mode from positive to negative phases. This multidecadal oscillation improves the prospect for a...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.