Abstract
In this letter, we present new methods of multiclass classification that combine multiple binary classifiers. Misclassification of each binary classifier is formulated as a bit inversion error with probabilistic models by making an analogy to the context of information transmission theory. Dependence between binary classifiers is incorporated into our model, which makes a decoder a type of Boltzmann machine. We performed experimental studies using a synthetic data set, data sets from the UCI repository, and bioinformatics data sets, and the results show that the proposed methods are superior to the existing multiclass classification methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.