Abstract
In this article, we propose a new method of multi-class classification in the framework of error-correcting output coding (ECOC). Misclassification of each binary classifier is formulated as a bit inversion error with a probabilistic model for each class and dependence between binary classifiers is incorporated into our model, which makes a decoder, a type of Boltzmann machine. Experimental studies using a synthetic dataset and datasets from UCI repository are performed, and the results show that the proposed method is superior to other existing multi-class classification methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.