Abstract

BackgroundMalnutrition and malaria frequently coexist in sub-Saharan African countries. Studies on efficacy of antimalarial treatments usually follow the WHO standardized protocol in which severely malnourished children are systematically excluded.Few studies have assessed the efficacy of chloroquine, sulfadoxine-pyrimethamine and quinine in severe acute malnourished children. Overall, efficacy of these treatments appeared to be reduced, attributed to lower immunity and for some antimalarials altered pharmacokinetic profiles and lower drug concentrations. However, similar research on the efficacy and pharmacokinetic profiles of artemisinin-combination therapies (ACTs) and especially artemether-lumefantrine in malnourished children is currently lacking.The main objective of this study is to assess whether artemether-lumefantrine is less efficacious in children suffering from severe acute malnutrition (SAM) compared to non-SAM children, and if so, to what extent this can be attributed to a sub-optimal pharmacokinetic profile.Methods/designIn two sites, Ouelessebougou, Mali and Maradi, Niger, children with uncomplicated microscopically-confirmed P. falciparum malaria aged between 6 and 59 months will be enrolled. Two non-SAM children will be enrolled after the enrolment of each SAM case. Children with severe manifestations of malaria or complications of acute malnutrition needing intensive treatment will be excluded.Treatment intakes will be supervised and children will be followed-up for 42 days, according to WHO guidance for surveillance of antimalarial drug efficacy. Polymerase Chain Reaction genotyping will be used to distinguish recrudescence from re-infection. SAM children will also benefit from the national nutritional rehabilitation program.Outcomes will be compared between the SAM and non-SAM populations. The primary outcome will be adequate clinical and parasitological response at day 28 after PCR correction, estimated by Kaplan-Meier analysis. To assess the pharmacokinetic profile of lumefantrine, a sparse sampling approach will be used with randomized allocation of sampling times (5 per child). A total of 180 SAM children and 360 non-SAM children will be recruited during the 2013 and 2014 malaria seasons.DiscussionThis study will provide important information that is currently lacking on the effect of SAM on therapeutic efficacy and pharmacokinetic profile of artemether-lumefantrine. If it shows lower therapeutic efficacy and decreased lumefantrine concentrations, it would inform dose optimization studies in SAM children.Trial registrationClinicalTrials.gov: NCT01958905

Highlights

  • Malnutrition and malaria frequently coexist in sub-Saharan African countries

  • This study will provide important information that is currently lacking on the effect of severe acute malnutrition (SAM) on therapeutic efficacy and pharmacokinetic profile of artemether-lumefantrine

  • We propose to evaluate the effect of malnutrition on the acquisition of specific antimalarial immunity

Read more

Summary

Introduction

Malnutrition and malaria frequently coexist in sub-Saharan African countries. Studies on efficacy of antimalarial treatments usually follow the WHO standardized protocol in which severely malnourished children are systematically excluded. Few studies have assessed the efficacy of chloroquine, sulfadoxine-pyrimethamine and quinine in severe acute malnourished children Overall, efficacy of these treatments appeared to be reduced, attributed to lower immunity and for some antimalarials altered pharmacokinetic profiles and lower drug concentrations. The main objective of this study is to assess whether artemether-lumefantrine is less efficacious in children suffering from severe acute malnutrition (SAM) compared to non-SAM children, and if so, to what extent this can be attributed to a sub-optimal pharmacokinetic profile. The rainy season, roughly from July to October, corresponds with the high transmission season of malaria, and to the hunger gap period In these countries, children under 5 years of age are the highest-risk population for both diseases, and it has been estimated that more than 50 % of child deaths were attributable to malnutrition potentiating effects on infections [1, 2]. Moderate acute malnutrition (MAM) is defined by a weight-for-height z-score between -3 and -2, or MUAC between 115 and 125 mm, whereas severe acute malnutrition (SAM) is defined by z-score < -3or MUAC

Objectives
Methods
Findings
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call