Abstract
This work presents a 15–57 GHz multiband/ multistandard phased-array architecture for the fifth-generation (5G) new radio (NR) frequency range 2 (FR2) bands. An eight-element phased-array receive module is demonstrated based on two four-channel wideband beamformer chips designed in the SiGe BiCMOS process and flipped on a low-cost printed circuit board. The SiGe Rx chip employs RF beamforming and is designed to interface to a wideband differential Vivaldi antenna array. Each channel consists of a low-noise amplifier (LNA), active phase shifter with 5-bit resolution, variable gain amplifier (VGA), and differential-to-single-ended stage. The four channels are combined using a wideband two-stage on-chip Wilkinson network. The beamformer has a peak electronic gain of 24–25 dB and a 4.7–6.2 dB noise figure (NF) with a −29 to −24 dBm input <inline-formula> <tex-math notation="LaTeX">$P_{\boldsymbol {1\,dB}}$ </tex-math></inline-formula> at 20–40 GHz. The eight-element phased-array module also achieved ultra-wideband frequency response with flat gain and low-system NF. The phased array scans ±55° with <inline-formula> <tex-math notation="LaTeX">$ < -12$ </tex-math></inline-formula>-dB sidelobes demonstrating multiband operation. A 1.2-m over-the-air (OTA) link measurement using the eight-element Rx module supports 400-MHz 256-QAM OFDMA modulation with < 2.76% error vector magnitude (EVM) at multiple 5G NR FR2 bands. To the author’s knowledge, this work achieves the widest bandwidth phased array enabling the construction of multistandard systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Microwave Theory and Techniques
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.