Abstract

The high throughput with low latency, massively connected devices, and effective utilization of spectrum for current wireless communication systems can be realized by adopting the fifth-generation (5G) new radio (NR) air interface. The key remarkable features that 5G NR presents are Ultra-Reliable Low-Latency Communications (URLLC), enhanced Mobile Broadband (eMBB), and massive Machine Type Communications (mMTC). To meet thereof features, 5G NR exerts different multiple access and modulation techniques. This paper addresses the physical layer of 5G NR and more explicitly explores the transmission of 5G NR over the physical uplink shared channel (PUSCH) considering several parameters. For example, different sub-carrier spacings (SCSs) are taken into account for analyzing the performance of PUSCH in terms of throughput versus Signal-to-Noise Ratio (SNR). Moreover, the effect of the well-known modulation techniques such as Quadrature Phase Shift Keying (QPSK), different order of Quadrature Amplitude Modulation (QAM) (i.e., 16, 64, and 256) on throughput is studied. Later on, the number of base station (BS) and user equipment (UE) antennas are varied. Lastly, the performance of PUSCH over different propagation channel models (clustered delay line (CDL) and tap delay line (TDL)) is also investigated in this paper. The extensive simulation studies have proved that QPSK exhibits finer outcomes in low SNR regions while 256-QAM shows remarkable results in high SNR regions. The maximum throughput can be realized even in low SNR regime if the number of BS antennas is increased. In addition, high throughput value can be attained by increasing SCS.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.