Abstract

A prophylactic quadrivalent (types 6/11/16/18) vaccine against oncogenic and warts-causing genital Human papillomavirus (HPV) types was approved by the US Food and Drug Administration in 2006. This paper presents a nonlinear, deterministic, age-structured, mathematical model of the transmission dynamics of HPV and disease occurrence in a US population stratified by gender and sexual activity group. The model can assess both the epidemiologic consequences and cost effectiveness of alternative vaccination strategies in a setting of organized cervical cancer screening in the United States. Inputs for the model were obtained from public data sources, published literature, and analyses of clinical trial data. The results suggest that a prophylactic quadrivalent HPV vaccine can: (i) substantially reduce the incidence of disease, (ii) increase survival among females, (iii) improve quality of life for both males and females, (iv) be cost-effective when administered to females age 12-24 years, and (v) be cost-effective when implemented as a strategy that combines vaccination of both females and males before age 12 vaccination with a 12 to 24 years of age catch-up vaccination program.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.