Abstract
A multi-task learning (MTL) method with adaptively weighted losses applied to a convolutional neural network (CNN) is proposed to estimate the range and depth of an acoustic source in deep ocean. The network input is the normalized sample covariance matrices of the broadband data received by a vertical line array. To handle the environmental uncertainty, both the training and validation data are generated by an acoustic propagation model based on multiple possible sets of environmental parameters. The sensitivity analysis is investigated to examine the effect of mismatched environmental parameters on the localization performance in the South China Sea environment. Among the environmental parameters, the array tilt is found to be the most important factor on the localization. Simulation results demonstrate that, compared with the conventional matched field processing (MFP), the CNN with MTL performs better and is more robust to array tilt in the deep-ocean environment. Tests on real data from the South China Sea also validate the method. In the specific ranges where the MFP fails, the method reliably estimates the ranges and depths of the underwater acoustic source.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.