Abstract

In this paper, a machine learning approach is proposed to predict the next day's stock prices. The methodology involves comprehensive data collection and feature generation, followed by predictions utilizing Multi-Layer Perceptron (MLP) networks. We selected 5,283 records of daily historical data, including open prices, close prices, highest prices, lowest prices, and trading volumes from four well-known stocks in the FTSE 100 index. A novel set of engineered and derivative indices is extracted from the original time series to enhance prediction accuracy. Two Multi-Layer Perceptron (MLP) are proposed to predict the next day's stock prices using the engineered discrete and continuous indices. The case study uses the daily historical time series of stock prices between January 1, 2000, and December 31, 2020. The proposed machine learning approach presents suitable applicability and accuracy, respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.