Abstract
Obtaining high-quality data sets from raw data is a key step before data exploration and analysis. Nowadays, in the medical domain, a large amount of data is in need of quality improvement before being used to analyze the health condition of patients. There have been many researches in data extraction, data cleaning and data imputation, respectively. However, there are seldom frameworks integrating with these three techniques, making the dataset suffer in accuracy, consistency and integrity. In this paper, a multi-source heterogeneous data enhancement framework based on a lakehouse MHDP is proposed, which includes three steps of data extraction, data cleaning and data imputation. In the data extraction step, a data fusion technique is offered to handle multi-modal and multi-source heterogeneous data. In the data cleaning step, we propose HoloCleanX, which provides a convenient interactive procedure. In the data imputation step, multiple imputation (MI) and the SOTA algorithm SAITS, are applied for different situations. We evaluate our framework via three tasks: clustering, classification and strategy prediction. The experimental results prove the effectiveness of our data enhancement framework.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.