Abstract

Change detection (CD) in remote sensing imagery has found broad applications in ecosystem service assessment, disaster evaluation, urban planning, land utilization, etc. In this paper, we propose a novel graph model-based method for synthetic aperture radar (SAR) image CD. To mitigate the influence of speckle noise on SAR image CD, we opt for comparing the structures of multi-temporal images instead of the conventional approach of directly comparing pixel values, which is more robust to the speckle noise. Specifically, we first segment the multi-temporal images into square patches at multiple scales and construct multi-scale K-nearest neighbor (KNN) graphs for each image, and then develop an effective graph fusion strategy, facilitating the exploitation of multi-scale information within SAR images, which offers an enhanced representation of the complex relationships among features in the images. Second, we accomplish the interaction of spatio-temporal-radiometric information between graph models through graph mapping, which can efficiently uncover the connections between multi-temporal images, leading to a more precise extraction of changes between the images. Finally, we use the Markov random field (MRF) based segmentation method to obtain the binary change map. Through extensive experimentation on real datasets, we demonstrate the remarkable superiority of our methodologies by comparing with some current state-of-the-art methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.