Abstract

In palaeoclimate reconstructions, the combination of proxy records measured in different climate archives is challenging because of the uncertainties associated with each proxy, but it can also help reduce some of these uncertainties. Here, we present a novel approach to combine speleothem and tree ring proxies for a drought reconstruction of the last 640 years: a fluid inclusion δ18O record from a stalagmite from Villars Cave (southwest France) and a tree ring cellulose δ18O record of Quercus spp. from the nearby Angouleme area. The δ18O of the fluid inclusions is taken as an estimate of the δ18O of the trees’ source water. Then, the cellulose and source water δ18O are used to calculate the leaf water isotopic enrichment, as well as relative humidity, which is the dominant controlling factor of this enrichment. The reconstructed long-term trends in relative humidity differ from a previously published reconstruction of moisture variability based on the tree ring record alone. Further measurements will be necessary to support either reconstruction. Nevertheless, this investigation demonstrates the great potential for combining isotope proxies from speleothems and tree rings to reconstruct both the low- and high-frequency variability of drought.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call