Abstract
Abstract The symmetric algorithm is a variant of the well-known Euler-Seidel method which has proven useful in the study of linearly recurrent sequences. In this paper, we introduce a multivariate generalization of the symmetric algorithm which reduces to it when all parameters are unity. We derive a general explicit formula via a combinatorial argument and also an expression for the row generating function. Several applications of our algorithm to the q-Fibonacci and q-hyper-Fibonacci numbers are discussed. Among our results is an apparently new recursive formula for the Carlitz Fibonacci polynomials. Finally, a (p, q)-analogue of the algorithm is introduced and an explicit formula for it in terms of the (p, q)-binomial coefficient is found.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.