Abstract

Through introducing the generalized Vandermonde determinant, the linear algebraic system of a kind of Vandermonde equations is solved analytically by use of the basic properties of this determinant, and then we present general explicit finite difference formulas with arbitrary order accuracy for approximating first and higher derivatives, which are applicable to unequally or equally spaced data. Comparing with other finite difference formulas, the new explicit difference formulas have some important advantages. Basic computer algorithms for the new formulas are given, and numerical results show that the new explicit difference formulas are quite effective for estimating first and higher derivatives of equally and unequally spaced data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.