Abstract

Flu vaccine allocation is of great importance for safeguarding public health and mitigating the impact of influenza outbreaks. In this regard, decision-makers face multifaceted challenges, including limited vaccine supply, targeting vulnerable people, adapting to regional variations, ensuring fairness in distribution, and promoting public trust. The objective of this work is to address the vaccination allocation problem by introducing a novel optimization scheme with the simulated annealing (SA) algorithm. A dual-objective model is developed to both manage infection rates and minimize the unit cost of the vaccination campaign. The proposed approach is designed to promote convergence toward the best Pareto front in multi-objective optimization, wherein SA attempts to embed diversity and uniformity within a memetic version of the controlled elitism nondominated sorting genetic algorithm (CENSGA). To model the underlying vaccination allocation problem, the dynamics of the disease are described using the susceptible–exposed–infectious–recovered (SEIR) epidemiological model to better express hidden flu characteristics. This model specifically analyzes the effects of pulsive vaccination allocation in two phases aiming to minimize the number of infected individuals to an acceptable level in a finite amount of time, which can help in stabilizing the model against sudden flu endemics over the long run. The computational experiments show that the proposed algorithm effectively explores the extensive search space of the vaccination allocation problem. The results of the suggested framework indicate that the obtained Pareto front best represents complete vaccination campaigns. The findings of this research can help in evidence-based decision making that can optimize flu vaccine distribution, contribute to the prevention of illness and reduction in hospitalizations, and potentially save countless lives.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.