Abstract

Prefabricated cabin modular units (PMCUs) are a widespread type of intermediate products used during ship or offshore platform construction. This paper focuses on the scheduling problem of PMCU assembly flow shops, which is summarized as a multi-objective, fuzzy-blocking hybrid flow-shop-scheduling problem based on learning and fatigue effects (FB-HFSP-LF) to minimize the maximum fuzzy makespan and maximize the average fuzzy due-date agreement index. This paper proposes a multi-objective non-dominated sorting gravitational search algorithm (MONSGSA) to solve it. In the proposed MONSGSA, the ranked-order value is used to convert continuous solutions to discrete solutions. Multi-dimensional Latin hypercube sampling is used to enhance initial population diversity. Setting up an external archive to maintain non-dominated solutions while introducing an adaptive inertia factor and a trap avoidance operator to guide individual positional updates. The results of multiple sets of experiments show that Pareto solutions of MONSGSA have better distribution and convergence compared to other competitors. Finally, the instance of PMCU manufacturer is used for validation, and the results show that MONSGSA has better applicability to practical problems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.