Abstract
BackgroundCongestive Heart Failure (CHF) is a serious cardiac condition that brings high risks of urgent hospitalization and death. Remote monitoring systems are well-suited to managing patients suffering from CHF, and can reduce deaths and re-hospitalizations, as shown by the literature, including multiple systematic reviews.MethodsThe monitoring system proposed in this paper aims at helping CHF stakeholders make appropriate decisions in managing the disease and preventing cardiac events, such as decompensation, which can lead to hospitalization or death. Monitoring activities are stratified into three layers: scheduled visits to a hospital following up on a cardiac event, home monitoring visits by nurses, and patient's self-monitoring performed at home using specialized equipment. Appropriate hardware, desktop and mobile software applications were developed to enable a patient's monitoring by all stakeholders. For the first two layers, we designed and implemented a Decision Support System (DSS) using machine learning (Random Forest algorithm) to predict the number of decompensations per year and to assess the heart failure severity based on a variety of clinical data. For the third layer, custom-designed sensors (the Blue Scale system) for electrocardiogram (EKG), pulse transit times, bio-impedance and weight allowed frequent collection of CHF-related data in the comfort of the patient's home.We also performed a short-term Heart Rate Variability (HRV) analysis on electrocardiograms self-acquired by 15 healthy volunteers and compared the obtained parameters with those of 15 CHF patients from PhysioNet's PhysioBank archives.ResultsWe report numerical performances of the DSS, calculated as multiclass accuracy, sensitivity and specificity in a 10-fold cross-validation. The obtained average accuracies are: 71.9% in predicting the number of decompensations and 81.3% in severity assessment. The most serious class in severity assessment is detected with good sensitivity and specificity (0.87 / 0.95), while, in predicting decompensation, high specificity combined with good sensitivity prevents false alarms. The HRV parameters extracted from the self-measured EKG using the Blue Scale system of sensors are comparable with those reported in the literature about healthy people.ConclusionsThe performance of DSSs trained with new patients confirmed the results of previous work, and emphasizes the strong correlation between some CHF markers, such as brain natriuretic peptide (BNP) and ejection fraction (EF), with the outputs of interest. Comparing HRV parameters from healthy volunteers with HRV parameters obtained from PhysioBank archives, we confirm the literature that considers the HRV a promising method for distinguishing healthy from CHF patients.
Highlights
Congestive Heart Failure (CHF) is a serious cardiac condition that brings high risks of urgent hospitalization and death
We propose a solution consisting of a combination of custom-designed sensors for home measurements with a three-layer monitoring model that involves clinical stakeholders assisted by two Decision Support Systems (DSS) based on a powerful machine learning engine
Design concept The system described in this paper aims to help CHF stakeholders make appropriate CHF management decisions through a three-layer monitoring system consisting of two clinical layers (Layers 1 and 2) and one patient layer (Layer 3)
Summary
Congestive Heart Failure (CHF) is a serious cardiac condition that brings high risks of urgent hospitalization and death. Management has evolved over the last several years from a traditional model almost solely based on crisis intervention towards more proactive and preventative disease management models supported by a combination of medications and preventive paradigms, including a healthy lifestyle. This management concept, defined as Chronic Care Model (CCM) [2], aims at establishing the pillars of a “medicine of initiative” in which the physician takes action before the disease worsens, as opposed to the old model of “waiting medicine” in which the patient is treated when the disease is already in its acute phase. Identifying the causes that lead to CHFrelated re-hospitalization provides the opportunity to redesign care to prevent re-hospitalization and subsequently to improve quality of life [3]
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have