Abstract

Multi-granularity hesitant fuzzy linguistic terms set is an effective expression of linguistic information, which can utilize some fuzzy linguistic terms to evaluate various common qualitative information and plays an important role when experts provide linguistic information to express hesitancy. Since the alternative description in the decision-making information system is characterized by multi-granularity, uncertainty, and vagueness, this paper proposes a multi-granularity hesitant fuzzy linguistic decision-making VIKOR method based on entropy weight and information transformation. Specifically, this paper firstly adopts fuzzy information entropy to obtain the weights of different attributes and introduces a multi-granularity hesitant fuzzy linguistic term set conversion method to realize the semantic information conversion between different granularities. Then for the converted affiliation linguistic decision matrix, the entropy weighting method is used to obtain the weights of different affiliation granularity layers, and a weight optimization VIKOR method based on the affiliation linguistic decision matrix is further proposed to rank the alternatives. Finally, the feasibility of the proposed method verified by arithmetic examples, experimental analysis is carried out in terms of parameter sensitivity analysis and comparison with other methods. The experimental results prove the rationality and effectiveness of the proposed method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.