Abstract
This article presents a fully-integrated dielectrophoresis (DEP)-assisted multi-functional CMOS biosensor array chip with 4096 working electrodes (WEs), 12288 photodiodes (PDs), reference electrodes (REs), and counter electrodes (CEs), while each WE and photodiode can be reconfigured to support on-chip DEP actuation, electrochemical potentiostat, optical shadow imaging, and complex impedance sensing. The proposed CMOS biosensor is an example of an actuation-assisted label-free biosensor for the rapid sensing of low-concentration analytes. The DEP actuator of the proposed CMOS biosensor does not require any external electrode. Instead, on-chip WE pairs can be re-used for DEP actuation to simplify the sensor array design. The CMOS biosensor is implemented in a standard 130-nm BiCMOS process. Theoretical analyses and finite element method (FEM) simulations of the on-chip DEP operations are conducted as proof of concept. Biological assay measurements (DEP actuation/electrochemical potentiostat/impedance sensing) with E.coli bacteria and microbeads (optical shadow imaging) demonstrate rapid detection of low-concentration analytes and simultaneous manipulation and detection of large particles. The on-chip DEP operations draw the analytes closer to the sensor electrode surface, which overcomes the diffusion limit and accelerates low-concentration analyte sensing. Moreover, the DEP-based movement of large particles can be readily detected by on-chip photodiode arrays to achieve close-loop manipulation and sensing of particles and droplets. These show the unique advantages of the DEP-assisted multi-functional biosensor.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have