Abstract

BackgroundDouble inversion recovery (DIR) fast spin-echo (FSE) cardiovascular magnetic resonance (CMR) sequences are used clinically for black-blood T2-weighted imaging. However, these sequences suffer from slice inefficiency due to the non-selective inversion pulses. We propose a multi-band (MB) encoded DIR radial FSE (MB-DIR-RADFSE) technique to simultaneously excite two slices. This sequence has improved signal-to-noise ratio per unit time compared to a single slice excitation. It is also motion robust and enables the reconstruction of high-resolution black-blood T2-weighted images and T2 maps for the excited slices.MethodsHadamard encoded MB pulses were used in MB-DIR-RADFSE to simultaneously excite two slices. A principal component based iterative reconstruction was used to jointly reconstruct black-blood T2-weighted images and T2 maps. Phantom and in vivo experiments were performed to evaluate T2 mapping performance and results were compared to a T2-prepared balanced steady state free precession (bSSFP) method. The inter-segment variability of the T2 maps were assessed using data acquired on healthy subjects. A reproducibility study was performed to evaluate reproducibility of the proposed technique.ResultsPhantom experiments show that the T2 values estimated from MB-DIR-RADFSE are comparable to the spin-echo based reference, while T2-prepared bSSFP over-estimated T2 values. The relative contrast of the black-blood images from the multi-band scheme was comparable to those from a single slice acquisition. The myocardial segment analysis on 8 healthy subjects indicated a significant difference (p-value < 0.01) in the T2 estimates from the apical slice when compared to the mid-ventricular slice. The mean T2 estimate from 12 subjects obtained using T2-prepared bSSFP was significantly higher (p-value = 0.012) compared to MB-DIR-RADFSE, consistent with the phantom results. The Bland-Altman analysis showed excellent reproducibility between the MB-DIR-RADFSE measurements, with a mean T2 difference of 0.12 ms and coefficient of reproducibility of 2.07 in 15 clinical subjects. The utility of this technique is demonstrated in two subjects where the T2 maps show elevated values in regions of pathology.ConclusionsThe use of multi-band pulses for excitation improves the slice efficiency of the double inversion fast spin-echo pulse sequence. The use of a radial trajectory and a joint reconstruction framework allows reconstruction of TE images and T2 maps for the excited slices.

Highlights

  • Double inversion recovery (DIR) fast spin-echo (FSE) cardiovascular magnetic resonance (CMR) sequences are used clinically for black-blood T2-weighted imaging

  • The 2-slice MB excitation had a signal-to-noise ratio (SNR) of 32.8 a.u. and was comparable to a two-average single slice excitation (SNR = 33.5 a.u.) which was close to the theoretical √2 SNR increase compared to a single slice single-average excitation (SNR = 25.6 a.u.)

  • These results indicate that the flip angle of the MB radio frequency (RF) excitation was consistent with a 90o excitation

Read more

Summary

Introduction

Double inversion recovery (DIR) fast spin-echo (FSE) cardiovascular magnetic resonance (CMR) sequences are used clinically for black-blood T2-weighted imaging. These sequences suffer from slice inefficiency due to the non-selective inversion pulses. We propose a multi-band (MB) encoded DIR radial FSE (MB-DIR-RADFSE) technique to simultaneously excite two slices This sequence has improved signal-to-noise ratio per unit time compared to a single slice excitation. It is motion robust and enables the reconstruction of high-resolution black-blood T2-weighted images and T2 maps for the excited slices. The NS pulse prevents the interleaving of multiple slices within the repetition time (TR), which leads to long dead times during the TR

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call