Abstract

In this paper we present some results obtained by studying the mathematical model describing a moving boundary hyperbolic problem related to a time dependent stress impact in a bar of Maxwell-like material. Due to the impact a shock front propagates with a finite speed. Here our interest is to underline the influence of the dissipative term on the propagation of the shock front. In the framework of the similarity analysis we are able to reduce the moving boundary hyperbolic problem to a free boundary value problem for an ordinary differential system. It is then possible, by applying two numerical transformation methods, to solve the free boundary value problem numerically. The influence of the dissipative term is evident: the free boundary (that defines the shock front propagation) is an increasing function of the dissipative coefficient.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call